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The Onsager-Machlup theory for Markov processes with 
discrete time parameter: a characterisation of the detailed 
balance 
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Kakioka Magnetic Observatory, Yasato, Niihari, lbaraki 315-01, Japan 

Received 15 July 1983 

Abstract. The Onsager-Machlup (OM) function is introduced for a spatially uniform system 
evolving in accordance with a discrete time MaFkovian law. Circulation of probability flow 
is expressed in terms of the OM function. Equivalence is established between the two 
conditions: circulation = 0 and the fulfilment of the detailed balance. 

1. Introduction 

There has been a renewed interest in Markovian models with discrete time parameter 
(Mayer-Kress and Haken 1981, Ito 1983). They are found to be good examples to 
study the influence of external random noises on the chaos of dynamical systems, one 
of the major subjects in recent non-equilibrium statistical mechanics (Nakamura 1978, 
Zippelius and Lucke 1981). 

In contrast with the continuous time Markov models (Bach and Durr 1978, Ito 
1981), the role of the Onsager-Machlup (OM) function has hardly been studied for 
discrete time models. This paper aims at presenting a discrete time version of the 
characterisation of the detailed balance in terms of the OM function. Let us recall the 
characterisation for continuous time models (Ito 1981). Consider a master equation 
in R" with a small parameter E, 

ap'(t,x)/at=E-' dr[w(x-Er, r)p"(t,x-Er)- w(x,r)pE(t,x)] ,  (1) 

which describes a spatially uniform system (van Kampen 1961, Kubo et a1 1973). The 
OM function L ( 4 ;  6 )  is introduced by the Legendre transformation of H :  

I 
L(x; U)'(& u) -H(x ;  f), u=V,H(x;  z ) ,  (2) 

where 

[exp(z, r ) -  l]w(x, r )  dr, (3)  

and (., a )  denotes the inner product. Net probability flow round a closed curve 
4 ( t )  ( O s ? <  T )  with 4(0) = 4 ( T )  has an asymptotic form exp(21(4; $ ) / E ) ,  where 
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the circulation I ( + ;  4) round 4 is given by 

Then the equivalence is found between the condition that I ( + ;  $) = 0 for any closed 
curve 4 and the condition that the master equation (1)  satisfies the detailed balance. 

2. Onsager-Machlup function for discrete time systems 

Let (XE(t))Osl<m be a Markov process generated by the master equation (1). Let T 

be the first jump time from X'(0) = x: T = inf{ t 2 0; XE(t) # x}. Then XE( T )  is on a 
dr-neighbourhood of x + r with probability 

p:(x, r )  dr=e-'w(x, r / E )  dr  dre-*w(x, T / E )  ( 5 )  /I 
(Doob 1953). This fact suggests that a discrete time version of X', denoted by X:, 
has a one-step transition probability density p ;  given by (5). In the following, quantities 
corresponding to X: are indicated by associating a subscript d: H i ,  L:, I s  etc, and 
the superscript E is omitted if E = 1: H:=' =Hd, L:=' =Ld etc. 

A simple calculation shows that the time derivative of a generating function of 
cumulants of X' 

H'(x;  z )  =lim A t 1 0  Af-llog E[exp(z,X'(At)-x)/X"(O) = X I  (6) 

agrees with H ( x ;  z )  given by (3) if we set E = 1. Here E[.IX"(O) = x] represents the 
conditional expectation with a constraint X " ( 0 )  = x. H ; ,  the corresponding quantity 
for Xs, will be defined by (6) with At = 1 instead of taking the limit A t  40: 

Hs (x;  z )  = log E[exp( 2, X: (1) - x)lX: (0) = x] = log ( dr  e(z3r)w(x, r /  E ) / (  E w (x))) ,  

where 

w(x) = dr  w(x, r ) .  J 
The OM function L d  for x d  is obtained by the Legendre transformation of &. 

(7) inversely, we have 
Let us sketch how the OM function L d  is related to the probability flow. Solving 

w(x, r/E)/Ew(x) = dz exp[H: (x;  iz)-i(z, r ) ]  I 
= 1 2, exp[Hd(x; iez) -i(z, r)] (9) 

with az = dz/(27r)", n being the dimension of the space variable. Take a smooth curve 
d( t )  (0 S t S T ) ,  and set x, = 4(  ~ j ) ,  rj = xi+, -xi ( j  = 0,1,  . . . , [ T /  E ]  - 1 = N -  1).  Here 

[ e ]  is the Gauss symbol. From ( 5 )  we see that the probability density of making a 
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transition xo -P x1 -* . . . -P xN is given by 

N-l W ( X j ,  T j / E )  n j=o & W ( X j )  

For sufficiently small E ,  the augment 
N-1 

[ & ( X I ;  iEzI)E-i(Ezj, r j / ~ ) a ]  
I=o 

will take the form of an integration 

E - l  loT dt [Hd(4(t);  iEz(t))-i(&Z(f), &(NI, 

- - E - 1  loT L d ( d 4 f ) ;  4w dt 

Id(4; 6) =-t  loT [Ld(4(f);  & ( f ) ) - L d ( d ) ( f ) ;  -&(t))l  dt. 

which is well approximated by 

if we take into account the most significant contribution from the extrema1 path. The 
above discussion shows that the probability flow round 4 is of the order of 
exp(-a jo Ld(4;  &)dt), and that the net probability flow, defined by the ratio of the 
probability flow round 4 to the one round 6 with $ ( t ) = # J ( T - t ) ,  is given by 
exp(21,(4; & ) / E ) .  Here I d  is given by (4) with the replacement of L by Ld: 

- 1  T 

(11) 

In fact the above argument on the probability flow is justified in the following sense 
(Ventsel 1976). Consider a process % E  defined by 

mf) = x X t / E l ) ,  (12) 

so that one time step of X ;  corresponds to the interval E in the actual time elapse. 
In (12),  [.] is the Gauss symbol. Then for any h > 0 ,  6 > 0 ,  there exists E ~ > O  such 
that, for E < the probability that 2' moves along 4, being inside the &tube around 
4, satisfies an inequality 

exp[-&-'(S,d(4) + h ) l <  p ( sup Im) - 4(t)l< 8 < exp[-&-'(ST,dw - h)l  
o e  1G T 

with  ST,^('$) =jT & ( 4 ( f ) ;  6( t ) )  dt. 

3. A characterisation of the detailed balance 

The detailed balance condition for X: is written as 

q E ( X - & Y ) W ( X - E Y ,  Y ) / E W ( X - - y )  = q E ( x ) w ( x ,  - y ) I E W ( X ) ,  (13) 
where q E ( x )  is the stationary probability density. We suppose that - E  log qE(x) and 
its derivative -EV log q E ( x )  converge to a certain function U(x)  and its derivative 
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V U(x) ,  respectively, in the limit of e L O .  Then (13) is reduced to 

(PI w(x, Y )  = w(x, - Y )  exp[-(y, VU(x))l .  

We first show that the condition (P) implies 

(C) M4; d)  = 0 for any smooth closed curve 4. 
By definition of the Legendre transformation 

Ld(4( f ) ;  d(t)) = (2, d(f))-Hd(4(t); 21, 

& ( ? I  =V.H,(4(t); 2) 

Substituting -y for y in the integrand of (17) and using (P), we have 

Using the relations (16), (20), (21), we see 

Id( 4( t )  ; &( t ) )  = -; dt ( 2  + 2, d(  t ) )  = -$[ U (  4( T ) )  - U (  4(0))] = 0. 

Conversely (C) implies (P) if limy,? w(x, y) Z 0 for any x. Take A > 0 and substitute 
4 ( A t )  for 4 ( t )  in the relation Zd(4; 4) = 0. Changing the variable A t - ,  t, we obtain 

Differentiating with respect to A, and setting A = 1, we have 

lor ( z + 2 ,  & ( t ) )  dt=O 

with 

2 = VuL,(d( t ) ;  - i ( t ) ) .  ( 2 5 )  

Here V u  represents the derivation with respect to the second augment of Ld. Since 
the relation (23) holds for any closed curve 4, there exists a potential function U such 
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that 

z+i= U(4(t)) .  (26) 

By the one-to-one correspondence of the Legendre transformation, equations (24) and 
( 2 5 )  are solved inversely as 

& ( t )  =O,H,(+(t); 2) ( 2 7 )  

-& t )  = v fH,( 4 ( 2 ) ;  2). (28) 

d ( t )  = v ,  log (J  exp[-(y, 0 ~ ( d ( t ) ) ) l w ( 4 ( t ) ,  - y )  dy). (29) 

Rearranging the right-hand side of (28) with the use of (26), we have 

Eliminating $ ( t )  from ( 2 7 ) ,  (29), we obtain 

from which we get 

with a constant C independent of z.  Here we recall a fact proved by using the 
Weierstrass approximation theorem (It0 1981). Given a continuous function f in R" 
with a compact support, if 1 e"3y'f(y) dy = 0 for any 2, then f = 0. Taking this into 
account, we have from (30) 

exp[-(y, v u(4(t))Iw(&(t), - Y )  = Cw(4(t), y ) .  

Take the limit y + O  and use the assumption limy," w ( x ,  y) # 0, Vx E R". We then see 
that C = 1, i.e. the condition (P) holds. 
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